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Abstract
A new digital file format is proposed for the long-term archival storage of
experimental data sets generated by serial sectioning instruments. The format
is known as the multi-dimensional eXtensible Archive (MXA) format and is
based on the public domain Hierarchical Data Format (HDF5). The MXA
data model, its description by means of an eXtensible Markup Language
(XML) file with associated Document Type Definition (DTD) are described
in detail. The public domain MXA package is available through a dedicated
web site (mxa.web.cmu.edu), along with implementation details and example
data files.

1. Introduction

A new trend in Materials Science is ‘data in the large’, that is, large volumes of data that
can be generated by experimental or numerical computerized techniques. The expansion of
data set sizes enabled by these technological advancements also leads to large amounts of
time and money invested in the production of quality data sets. The potential for significant
advancements in Materials Science exists if technologies can be developed that facilitate reuse
of these high quality/high production cost data sets. This paper describes developments of
one technology toward this end: the Multi-dimensional eXtensible Archive (MXA) format for
preservation of multi-dimensional experimental or numerical data, that our group is developing
specifically to facilitate data reuse.

Data storage for reuse is a non-trival problem. As any graduate advisor can attest to, simply
transferring data from one graduate student to another one, in particular after a multi-year
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hiatus, can pose insurmountable barriers: perhaps the file format used was non-standard and
the detailed format description was lost; perhaps the filename convention was insufficient
to clearly identify the files; perhaps some crucial parameters describing the experiment are
missing; and so on. It is obviously possible to collect all files for a given experiment in
an archive format, such as .tar [1] or .zip [2], but this does not really solve the problem;
after extracting the contents of the archive, the same issues mentioned above might still
be encountered. There is, hence, a need for a flexible file format for the storage of large
volume data sets, in such a way that the data become self-contained, with no possibility for
loss of crucial information. In particular, the long-term survivability of a data set should
not depend on the memory of the researcher(s) who obtained or created it. There have
been attempts in the past to create file formats that are specific to the materials community.
For instance, the MatML format [3] is an eXtensible Markup Language (XML) developed
specifically for the standardized exchange of material property data values. Often, however,
these special formats are too limited in their scope, and widespread adoption of the format is
unlikely.

File naming conventions are, to some extent, a matter of personal preference. Since most
computer operating systems now allow for long filenames, it is often a practice to rely on
filenames, alone, as the documentation of the data, where as many descriptors as possible are
concatenated in the filename. Often, abbreviations and shorthand are used whose meaning is
clear to the researcher while working with the data, but information documented in this fashion
fades with time and may become incomprehensible to other researchers attempting to reuse
the data.

In developing the MXA specification, we have identified the following characteristics to
be critical for reuse and archiving. Firstly, data, whether it be numerical or experimental,
nearly always consist of the actual data and, what is commonly called, meta-data. Meta-
data can encompass both data that are specific to a single image, such as a slice number or a
polarizer setting, and data that are common to the entire data set, such as sample chemistry,
sample preparation, data ownership and experimental conditions. To guarantee the integrity
of the file set, both data and meta-data must always be kept together. Secondly, it is all too
easy to open an image file using any of a series of image processing programs, modify the
image and then save it back to the same file. In a sense, this would corrupt the data set,
since the original image is now no longer available. Obviously, one could give the original
data files ‘read-only’ protection, but this is easily circumvented. The long-term storage and
preservation of the original data thus become a significant issue. Thirdly, data sets can have
many different dimensionalities; for instance, the data could consist of 2D images taken as a
function of one or more external parameters (e.g. applied magnetic field, sample temperature,
etc), and a flexible data format should be capable of accommodating all these different cases.
Fourthly, the data acquired in an experiment or generated in a simulation are often hierarchical;
for instance, an optical microscope image may be a mosaic of multiple smaller images, and
each of these might, in turn, consist of multiple components, either red–green–blue or perhaps
multiple images acquired with different polarizer orientations. The new data format will have
to be flexible enough to accommodate a wide variety of data hierarchies. Finally, the methods
used to store data in and extract data from the archive must be simple and independent of the
complexity of the data.

The MXA format was designed to eliminate these common problems with data storage.
The MXA format provides the following platform-independent features:

(i) the ability to store multi-dimensional data sets in a single file;
(ii) a rigorously defined but very flexible hierarchical data structure;

(iii) transparent methods to store and extract both data and meta-data.
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Figure 1. (a) Schematic representation of the data acquired during a serial sectioning experiment,
in which for each slice a single optical micrograph is recorded; for each micrograph, several items of
meta-data are stored, and there is additional meta-data for the entire experiment (i.e. items common
to all micrographs). In (b), the logical structure of (a) is represented in abstracted form, introducing
the terminology used to describe the MXA data model.

A recent report from the National Research Council on the relatively new field of Integrated
Computational Materials Engineering (ICME) calls for the creation of pre-competitive data
repositories as part of a larger scale cyberinfrastructure ‘that permits multidisciplinary analysis,
collaborative model development and design optimization with materials as a key optimization
parameter’ [10]. These data repositories should contain both experimental data and the tools
and modules needed to analyze the data. The file format presented in this paper represents a
significant step in the direction of a standardized data format for such ICME microstructural
databases.

The structure of this paper is as follows: first, in section 2, we define the basic MXA data
model by means of a few examples. In section 3, we provide a more formal description of
the data format in terms of a Document Type Definition (DTD) and an XML approach. We
discuss the implementation and the structure of the web site from which the public domain
MXA package can be downloaded. We conclude this paper in section 4 with the description
of a series of three example data sets that are made available as part of the MXA package.

2. The MXA Data Model

Consider a serial sectioning metallography experiment, in which one repeatedly removes a
thin layer of material from a sample and records an image of the new surface by means of an
optical microscope. Such an experiment could be performed manually [11] or by means of a
robot-controlled setup [12]. The result of the experiment (i.e. the data) is a series of optical
micrographs, representing consecutive sections through the sample. As meta-data, one could
record the date and time of the experiment, the name of the operator, the sample label, the
thickness of each removed slice, the type and magnification of the optical microscope and so
on. Schematically, the data resulting from this experiment are represented in figure 1(a): the
micrographs are labeled according to slice number (0 to n − 1, with n the number of slices),
and for each micrograph a number of meta-data items are to be stored, such as the time-stamp
and the slice thickness. There is also meta-data that all micrographs have in common, such
as the operator, the material and so on; these types of meta-data are associated with the entire
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Figure 2. Schematic representation of the data model for a two-dimensional data set; each entry
of the type [i, j ] is associated with a single signal (with possible attributes).

series of images, instead of with any particular image. The logical structure of the data and
meta-data in figure 1(a) is represented in more abstract form in figure 1(b). The data are
one-dimensional (i.e. the thickness series), and for each data node a single signal is stored (i.e.,
the optical micrograph). The data series has a number of attributes, and each individual signal
may also have attributes. What emerges from this representation is that the data consist of
signals which correspond to data nodes along a data dimension; both the data dimension and
the individual signals may have one or more attributes.

Next, assume that, in addition to the optical micrograph, we also record a polarized light
image for each slice. This second image can be regarded as a second signal, so that with each
entry along the data dimension, we associate two signals, each with its own attributes. If we
record a series of polarized light images for each slice, for instance, at eight 45◦ increments of
the polarizer orientation angle, then we could regard each of these images as a new signal, or,
alternatively, we could regard the orientation angle as a new data dimension. This is shown
schematically in figure 2. Each data entry is labeled with two indices [i, j ], where i labels
the slice number and j the polarizer orientation, and is associated with a single signal (the
polarized light image). It is obvious that many data sets can be mapped onto this particular
abstract data model.

Consider next the case of a two-dimensional data set with, for each dimension i, a
number ni of data nodes. Each node is characterized by two coordinates ([0, 0] � [i, j ] �
[n1 − 1, n2 − 1]); each node has associated with it a set of signals. In figure 3, there are
two signals (1 and 5) and a signal group which itself consists of three signals (2, 3 and 4).
Both signals and data dimensions may have multiple attributes, i.e. descriptors that are specific
to each item. To make the example more concrete, consider the following experiment: a
binary alloy sample has been prepared for optical microscopy by conventional metallographic
techniques. An optical microscope is used to examine the polished surface as a function of the
sample temperature; for each temperature, several locations on the sample surface are imaged
using three different detectors. The first detector produces an infrared image, the second
one a visible light image, separated into its red, green and blue component images and the
third detector produces an ultraviolet image. The sample is mounted on an automated x–y

translation stage, so that the same sample locations can be imaged at different temperatures.
This example is readily mapped onto the schematic of figure 3. Data dimension 1 is selected to
be the location on the sample; if there are 20 different locations at which images are acquired,
then n1 = 20. The second data dimension is the sample temperature; perhaps the sample is
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Figure 3. Schematic representation of a multi-dimensional data set (two-dimensional in this case)
with several signals (two signals and a signal group consisting of three signals) for each data node.

heated from 300 to 800 K, in steps of 50 K, so that n2 = 11. Since the same locations are used
at all temperatures, the list of coordinates of all locations can be stored as an attribute to data
dimension 1, whereas the list of all temperatures can be an attribute to data dimension 2. The
infrared image would be signal 1, the ultraviolet image signal 5 and the components of the
visible light image would be grouped as three signals in a signal group. For each signal, there
may be instrumental or detector settings that need to be stored as attributes.

In the general multi-dimensional case with Nd dimensions, each data node is labeled by a
vector of integer components, [p0, p1, p2, . . . , pNd−1], with 0 � p0 � n0−1, 0 � p1 � n1−1,
. . ., 0 � pNd−1 � nNd−1 − 1. The first allowed index of each dimension is taken to be 0. In
the example above, the temperature T (dimension 2) corresponding to data node j can be
determined as

Tj = s2 + j × �s2,

where s2 is the starting value (300 K in this case) and �s2 the increment (50 K). This simple
linear scaling is used for all data dimensions, so that the parameters si , �si and ni must be
stored as attributes to each dimension i.

Obviously, there are many possible variations on this schematic, with a different number
of dimensions, and different combinations of signals and signal groups. The MXA format is
designed to accommodate all possible variations of this basic schematic, which we will refer
to as the MXA Data Model.

3. Implementation

Because the MXA Data Model is a specification that describes the organization of data and
meta-data, the actual storage can be accomplished in any number of ways. During the search
for a fast, stable, open, flexible and portable storage format, a number of established file formats
were evaluated for use as the basis for the MXA Data Model. The selection of Hierarchical
Data Format (HDF5) as the underlying file format for the MXA format was made based on a
comparison of six different commonly available scientific data formats: (HDF4) [5], HDF5 [4],
netCDF (network Common Data Form, for storage of array-oriented scientific data) [6], PDB
(Protein Data Bank format) [7], FITS (Flexible Image Transport System, used predominantly
in astronomy) [8] and DICOM (Digital Imaging and Communications in Medicine) [9]. Out
of these six formats, HDF5 was selected because it is widely supported on platforms ranging
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from small personal computers to High Performance Computing machines, it is accessible
from C, C++, Fortran and Java, it is scalable (no size limits), it is searchable (random access),
it has a vendor friendly Open Source License (BSD Like) and it is constantly updated and
enhanced. While other formats also satisfy several of these criteria, HDF5 presents the
best balance of all the above criteria. From the HDF5 web site at http://www.hdfgroup.org
we quote:

“HDF5 is particularly good at dealing with data where complexity and scalability are
important. Data of virtually any type or size can be stored in HDF5, including complex data
structures and data types. HDF5 is portable, running on most operating systems and machines.
HDF5 is scalable—it works well in high end computing environments, and can accommodate
data objects of almost any size or multiplicity. It is also efficient, providing fast access to
data, including parallel I/O. It also can store large amounts of data efficiently—it has built-in
compression, or applications can also provide their own special-purpose compression.”

The current MXA specification is implemented using both C++ and IDL (Interactive Data
Language, [13]). The MXA C++ library contains a robust Application Programmer Interface
(API) that allows the scientist to import, export and query data stored in the MXA data file.
The current version of the MXA library implements APIs that allow for the integration of
the library into any existing simulation or experiment where data storage is performed. The
library also exposes APIs to import existing data sets based on tiff images or the use of
APIs and base classes to create computer code to import custom data files in formats not
already included in the library. Examples that show how to import various types of data
are included in the MXA source code distribution. Additional examples show usages for
many of the APIs available in the MXA Library. The current C++ code base is portable
across many different compilers, including the Visual Studio suite from Microsoft, the GNU
C/C++ compilers and the Intel C++ compilers in both 32 and 64 bit forms. The MXA
code base leverages several open source projects to streamline the development. The most
important among them is the HDF5 (www.hdfgroup.org) file format in which all MXA data
are stored. In addition, the Expat software library is utilized for XML processing and the
Tiff (www.remotesensing.org) library is used for basic image import and export. The MXA
project uses the CMake meta-build system to generate appropriate build systems for each type
of compiler suite being used and all the MXA APIs can be converted into HTML code using the
Doxygen (http://www.stack.nl/dimitri/doxygen/) utility. Using the MXA library, researchers
can easily integrate the import, processing and archive of their data sets into existing code
bases.

The source code for both C++ and IDL versions is available at the following URL:
http://mxa.web.cmu.edu/

This web site provides the following components: background information on the MXA
format; a detailed (formal) specification of the MXA format, in terms of HDF5 variable
types; compilation notes for Microsoft Windows, UNIX and UNIX like (including Apple
Inc.’s Mac OS X) based operating systems, as well as system requirements; and a series
of ‘How To’ pages, describing how to include MXA in a project, how to write a data
import delegate and how to import data into HDF5 using the MXA application programming
interface (API). A detailed API, describing the implementation details of all the C++ classes
and namespaces, along with their hierarchy, is made available. Finally, the site provides
detailed documentation and a series of examples (described in the next section). To facilitate
the generation of new importer routines, the web site also provides an ‘import generator’,
a simple utility which generates all the skeleton code needed for a new importer. The
three example MXA files discussed in the next section along with the corresponding XML
files can also be downloaded from the MXA web site. These files can be viewed with
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the generic QHDFViewer application as well as the more MXA specific ‘DataViewer’
application.

The IDL implementation of the MXA model consists of three libraries:

(i) hdf lite.pro contains the complete HDF5 Lite API converted into IDL function calls with
identical names and arguments (with the exception of the H5LTrepack routine, for which
there is no easily implementable IDL equivalent code). The HDF5 Lite API provides
a series of higher level routines to facilitate the creation and reading of data sets and
attributes.

(ii) hdf im.pro implements the HDF5 IM API (a collection of routines for reading and writing
grayscale and color images as well as color palettes) as a series of IDL function calls,
again with identical names and arguments as in the original interface.

(iii) mxa library.pro contains all the MXA routines for reading, writing and parsing of both
MXA and XML files, as well as a few wrapper routines to catch and gracefully handle
errors.

Since IDL is an interpreted language, all three libraries must be compiled at the beginning
of an IDL session before they can be used; a simple routine mxa init.pro is provided for this
purpose.

While the API approach provides maximum flexibility to the programmer, it also requires
an intimate familiarity with the inner workings of the library. In order to ease the transition
of existing data sets to the MXA file format a few enhancements have been added to the
MXA library. One of these enhancements allows the scientist to describe the simulation or
experimental data using the XML in terms of the MXA Data Model components. The XML
file format is written in plain text and is ‘human readable’. The XML file contains the MXA
Data Model description, the Required Meta-Data, any user meta-data and links to the data files
that will be imported into the MXA archive file. Numerous XML tools and editors can be
employed to help the generation of the XML file. The availability of a DTD on the internet
facilitates error checking of the XML document before its use. All three examples in the next
section make use of this XML-based approach.

The XML DTD for the higher level interface to the MXA data model can be found on the
web site under the heading ‘XML Usage’. This page shows the complete DTD with a brief
explanation of all its components, as well as an example XML file that makes use of all the
required fields and attributes. Using XML to import and export the MXA data model allows
the researcher to reuse models from one experiment to the next. In the current usage scenario,
it is expected that the XML file is used as a template for a particular type of experiment or
simulation. For this reason, certain entries in the XML file are optional; if they are omitted, it
is assumed that their values will be gathered through another mechanism, such as a Graphical
User Interface (GUI) or a configuration/initialization file for the experiment. The DTD file is
available over the internet at the following URL: http://mxa.web.cmu.edu/mxa 0.4.dtd

4. Examples

In this section, we describe three examples of the use of the XML approach; two examples
are taken from experiments, one from simulations, to emphasize that the data format is not
exclusively designed for one or the other. The data sets are taken from real experiments and
simulations. The MXA web site provides both the MXA-formatted data files and the complete
XML files used to define their internal structure.

7
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<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE File_Root SYSTEM "http://mxa.web.cmu.edu/mxa_0.4.dtd">
<File_Root>
   <Data_Model File_Type="MXA" File_Version="0.4">
      <Data_Root Name="Pearlite" />
      <Data_Dimensions>
         <Dimension Name="Slice" Alt_Name="Slice #" Start_Value=”0” Increment=”1” 
                                 Count=”50”  End_Value=”49” />
      </Data_Dimensions>
      <Data_Records>
         <Signal Name="SliceImage" Alt_Name="Cropped Optical Microscopy Image" />
      </Data_Records>
   </Data_Model>
   <Meta_Data>
      <Required_MD Creator="M. Hillert" Date="1959" Name="Pearlite Colony" 
      Description="Manual serial sectioning of pearlite colony" Pedigree="Derived" 
      Original_Source_File="Not Applicable" Distribution_Rights="Unlimited" 
      Release_Limitation="Not Applicable"  Release_Number="Not Applicable" />
      <UserDefined_MD Pixels_Per_Micron=”6.3” />
   </Meta_Data>
</File_Root>(b)

(a)

Figure 4. (a) Slice #40 of the example pearlite MXA file; the XML file used to create the example
MXA file is shown in (b).

4.1. Serial sectioning of a pearlite colony

This data set, courtesy of M Hillert, was created in the late 1950s by means of manual polishing
and optical microscopy on a pearlite colony in a carburized electrolytic iron alloy. The complete
data set consists of 242 images with a 1 µm slice thickness; a 3D visualization of the pearlite
colony was recently published in the Journal of Metals [11]. The MXA file available through
the web site contains the first 50 images of this experimental stack; an example image (for
slice #40) is shown in figure 4(a).

The XML file describing the data structure of the pearlite MXA file is shown in figure 4(b).
The file defines two elements: the Data Model and the Meta Data. There is only one
Data Dimensions element corresponding to the stack of slices. Several optional attributes
are also listed (in light gray) for this Dimension: Start Value = 0 (number of the first slice);
Increment = 1 (slice images are numbered sequentially); Count = 50 (number of slice images);

8
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Table 1. Image and file size data for the example MXA files available from the MXA web site
(http://mxa.web.cmu.edu/).

File Number of slices Image size (pixels) *.mxa.zip file size (bytes)

pearlite.mxa 40 1024 × 1024 1, 901, 215
in100.mxa 20 1024 × 954 47, 135, 202
phasefield.mxa 4 × 64 256 × 256 185, 496, 486

End Value = 49 (index of last slice image). The explicit inclusion of optional attributes in
the XML file provides for a more detailed description of the data model, but it makes the
XML file less generally useful in the sense that this file can then only be used for image series
consisting of 50 images. Omission of these optional attributes results in a more generally useful
XML file.

The Data Records element in figure 4(b) corresponds to a single Signal, which is the actual
image for each slice. For the present data set, the original images were made available in the jpeg
format; they were then manually adjusted to remove unwanted ferrite/ferrite grain boundaries
and allotriomorphs and stored in the MXA format. Each image has dimensions 1024 × 1024
pixels, with a scale factor of 6.3 pixels µm−1; this information is entered in the user-defined
meta-data. To indicate that the images are derived from the original microstructural images,
the required Meta Data element Pedigree is set to ‘Derived’ instead of ‘Original’.

The resulting MXA file, pearlite.mxa, and the corresponding XML file, pearlite.xml, are
available from the MXA web site. Selected file information is listed in table 1.

4.2. Focused ion beam (FIB) serial sectioning of an IN100 superalloy

A second, somewhat more complex, experimental example involves a data series acquired
using a FIB electron microscope. The data are obtained by serial sectioning through a sample;
for each section, an electron back-scatter diffraction (EBSD) map is recorded, as well as four
ion-induced secondary electron (ISE) images at different sample tilt angles. These different
sample orientations give rise to different contrasts due to the changing channeling orientations
of individual grains, and a series of images rather than a single one will aid in the subsequent
segmentation of the data set. The EBSD data can be broken down into multiple arrays and
ordered with a hierarchical grouping within the Data Records section, as shown in figure 5(d).

Using a custom written parser, the data are imported from the files produced by the
orientation imaging microscopy (OIM) system and the scanning electron microscope, and
stored in the MXA data file. Example images for slice #15 are shown in figure 5(a)–(c); in
(d), the Data Model section of the corresponding XML file is shown. The MXA file contains
20 slices, with multiple signal groups and signals for each slice (table 1).

Note that one can include information about the sample tilt angles as XML attributes to the
individual signals. Doing so will restrict the use of the corresponding XML file to data sets for
which the tilt angles have the same values. Alternatively, one could define these user-defined
attributes when the MXA file is created, without specifying them in the XML file. This would
make the XML file more generally useful. For maximum portability and generality, the XML
file should only contain the required attributes, as defined in the DTD.

4.3. Three-dimensional phase field simulation

The third and final example is a computational one. This example uses results from a 3D
phase field simulation of a NiAl two-phase γ –γ ′ alloy with a γ ′ volume faction of 54%
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(a) (b) (c)
   <Data_Model Model_Type="MXA" Model_Version="0.4">
     <Data_Root Name="OIMFIB/Data/" />
     <Data_Dimensions>
           <Dimension Name="FIB Slice" Alt_Name="FIB Slice" Start_Value="1" End_Value="20" 
             Count="20" Increment="1" Index="1"  Uniform="1" />
     </Data_Dimensions>
     <Data_Records>
         <Signal Name="Secondary Electron Image 1" Alt_Name="SE1" />
         <Signal Name="Secondary Electron Image 2" Alt_Name="SE2" />
         <Signal_Group Name="Ion Induced SEI Tilt Series" Alt_Name="ISE Tilt Series">
             <Signal Name="Tilt-0" Alt_Name="Tilt-0" />
             <Signal Name="Tilt-1" Alt_Name="Tilt-1" />
             <Signal Name="Tilt-2" Alt_Name="Tilt-2" />
             <Signal Name="Tilt-3" Alt_Name="Tilt-3" />
         </Signal_Group>
         <Signal_Group Name="OIM" Alt_Name="OIM">
            <Signal Alt_Name="Image Quality" Name="Image Quality" />
            <Signal Alt_Name="Confidence Index" Name="Confidence Index" />
            <Signal Alt_Name="Phase" Name="Phase" />
            <Signal_Group Alt_Name="Euler Angles" Name="Euler Angles">
               <Signal Alt_Name="Phi1" Name="Phi1" />
               <Signal Alt_Name="Phi" Name="Phi" />
               <Signal Alt_Name="Phi2" Name="Phi2" />
            </Signal_Group>
         </Signal_Group>
     </Data_Records>
  </Data_Model>

(d)

Figure 5. (a)–(c) ISE electron images of a powder-processed IN100 alloy, for three of the four
experimental sample tilt angles (0◦, 6◦ and 12◦); a portion of the XML file used to create the
example MXA file is shown in (d).

(VF54). The phase field program produces large ASCII text files as output. These data were
organized into the MXA Data Model using a pair of Data Dimensions (Time and XYSlice)
and 4 Data Records (Composition and 3 Order Parameters). The Data Records were once
again put into a hierarchical grouping, as shown in figure 6(e). A composition map and the
accompanying three order parameter maps for slice # 0 at timestep 28 are shown in figure 6(a)–
(d), respectively. The data were parsed and stored into an MXA file, available from the
MXA web site (see table 1). The data set contains time steps 1, 10, 19, 28 and slices 0
through 63 (Inclusive). Each slice is a 256 × 256 sample area stored as 32-bit floating point
values.

As an example of how data can be extracted from an MXA file, we produce here
a short section of relevant C++ source code for processing all slices of data for a
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(a) (b) (c) (d)

(e)

  <Data_Model>
     <Data_Root Name="Phasefield/VF54_Set-1/" />
     <Data_Dimensions>
       <Dimension Alt_Name="Timestep" Count="4" End_Value="28" Increment="9" Index="0"
                            Name="Timestep" Start_Value="1" Uniform="1"/>
       <Dimension Alt_Name="XY Slice" Count="64" End_Value="63" Increment="1" Index="1"
                            Name="Slice" Start_Value="0" Uniform="1"/>
     </Data_Dimensions>
     <Data_Records>
       <Signal_Group Alt_Name="NiAl" Name="NiAl">
         <Signal  Alt_Name="Composition"  Name="Composition"/>
         <Signal_Group  Alt_Name="Order Parameters" Name="Order Parameters">
            <Signal Alt_Name="Eta-1" Name="Eta-1"/>
            <Signal Alt_Name="Eta-2" Name="Eta-2"/>
            <Signal Alt_Name="Eta-3" Name="Eta-3"/>
         </Signal_Group>
       </Signal_Group>
     </Data_Records>
  </Data_Model>  

Figure 6. (a) Composition map and (b)–(d) three order parameter maps for a 3D phase field
simulation of a NiAl alloy with a γ ′ volume fraction of 54%; the images were taken from slice #0
at time step 28. A portion of the XML file defining the structure of the corresponding MXA file is
shown in (e).

specific time index:

/* Use typedefs to make code more readable */

typedef IDataFile::Pointer DataFile;
typedef IDataModel::Pointer DataModel;
typedef IDataDimension::Pointer Dimension;
typedef IDataRecord::Pointer Record;

/* Load the MXA file and gather the needed Data Dimension and Record variables */

DataFile dataFile = H5MXADataFile::OpenFile(filename, READ_ONLY);
DataModel model = dataFile->getDataModel();
Dimension slice = dataModel->getDataDimension("Slice");
Record compositionRec = model->getDataRecordByNamedPath("Nickel/Composition");

/* Create some variables to hold the data and error codes */

std::vector<float> data; // Use an STL Vector to store data
int indices[2] = {10, 0}; // Time step 10, Slice number zero
herr_t error = 0;
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/* Loop over all slices in the data set */

for (int i = slice->getStartValue(); i <= slice->getEndValue(); ++i)
{
indices[1] = i; // Set the index to the current slice value

/* Generate an internal HDF5 path to the data that is to be read */

std::string datasetPath
= H5MXAUtilities::generateH5PathToDataset(model, indices,
compositionRec);

/* Read the data into the std::vector object ’data’*/

error = H5Lite::readVectorDataset(dataFile->getFileId(), datasetPath, data);
if (error < 0) {
process_error(); // Handle any errors reading the data from the HDF5 file

}

/* Process the data through a custom filter*/

ProcessData(data);
} // End Loop on Slice

5. Conclusions

We have created the MXA file format to address the important problem of long-term archival
storage of data acquired using a variety of experimental or numerical simulation techniques.
The format is based on the HDF5 public domain format and is available for downloading
from a dedicated web site (mxa.web.cmu.edu). The file format can be described rigorously
via an XML file, which, in turn, relies on the MXA DTD file. Two implementations of the
MXA format are available: C++ and the Interactive Data Language. While the file format was
originally designed to address a need in the experimental materials science community, it is
conceivable that other science and/or engineering areas may also benefit from this standardized
file format.
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